US009369344B2

a2z United States Patent (10) Patent No.: US 9,369,344 B2
Datla et al. (45) Date of Patent: Jun. 14, 2016
(54) AUTOMATED TECHNIQUES TO DEPLOY A (56) References Cited
CONVERGED INFRASTRUCTURE HAVING
UNKNOWN INITIAL COMPONENT U.S. PATENT DOCUMENTS
CONFIGURATIONS

2003/0177412 Al 9/2003 Todd
. . 2006/0064619 Al 3/2006 Wen et al.
(71) Applicant: Cisco Technology, Inc., San Jose, CA 2007/0168493 Al 7/2007 Sarwono ef al.
(as) 2012/0151036 Al 6/2012 Detro et al.
2013/0036214 Al 2/2013 Carmel et al.
(72) Inventors: Raju Datla, Pleasanton, CA (US);
Parthasarathy Venkatavaradhan, FOREIGN PATENT DOCUMENTS

Sunnyvale, CA (US); Ravikumar
Pisupati, San Jose, CA (US); Srinivas

Kanchana, Dublin, CA (US)

WO 2014/022341 Al 2/2014

Scaramella, “HP Blade System Matrix: Delivering the Converged

(73) Assignee: Cisco Technology, Inc., San Jose, CA Infrastructure,” IDC, White Paper, Jun. 2010, 11 pages.
(as) UBM TechWeb, “Five Reasons to Make the Move to a Converged
Infrastructure,” A UBM TechWeb White Paper, Sep. 2012, 5 pages.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

Primary Examiner — Qing Wu
U.S.C. 154(b) by 365 days.

(74) Attorney, Agent, or Firm — Edell, Shapiro & Finnan,

(21) Appl. No.: 14/022,435 LLC
(22) Filed: Sep. 10, 2013 67 ABSTRACT
(65) Prior Publication Data A technique to adaptively configure components of a con-
verged infrastructure (CI). Component configuration infor-
US 2014/0109094 A1 Apr. 17,2014 mation is collected from and representative of operating stor-
age, compute, and network components of the CI. A pod
Related U.S. Application Data descriptor is constructed from the collected information. The
(60) Provisional application No. 61/712,551, filed on Oct. pod descriptor includes operating storage, compute, and net-
11, 2012. work component configuration definitions for the Cl based on
the collected component configuration information. A pack-
(51) Int.CL age specification unit is generated based on the component
HO4L 1224 (2006.01) configuration definitions of the pod descriptor. The package
GO6F 9/46 (2006.01) specification unit includes tasks that, when executed, auto-
(52) US.CL matically inventory, assess, and configure targeted ones of the
CPC o, HO4L 41/0883 (2013.01); GO6F 9/46 CI components. The technique executes the tasks in the pack-
(2013.01); HO4L 41/0806 (2013.01) age specification unit to perform corresponding operations on
(58) Field of Classification Search targeted ones of the CT components.
None
See application file for complete search history. 21 Claims, 14 Drawing Sheets

AUTCHATICALLY COLLECT COMPONENT CONFIGURATION
o

30LICIT COWPONENT CONFIBURATION: &
INFORMAZION FROM & USER THROUGH A GRAPHICAL |
USER INTERFACE

GENERATE
POD
DESCRIPTOR 9
W0

325
RECEIVE COMPONENT CONFIGURATICN INFORMIATION o/
ENTERED MANUALLY THROUGH THE GRAPHICAL USER INTERFACE

30
i
J

5

SELECT INVENTORY, ASSESS, ANC CONFIGURE TASKS FROM {
ALIBRARY OF TASKS BASED ON THE NETWORK CORFONENT £
CONFIGURATION DEFINF HE PQD BESCRIPTOR
GENERATE 30 THAT THE TASKS ARE SUPPCRTED ON THE CI COMPONENTS
)

N

30

~E

THE SELECTED INVENTORY, ASSESS, AND CONFIGURE]
& {VENTORY. ASSESSMENT. AND CONFIGURATION
TASK MODELS OF A PACKAGE DESIGK SPECIFICATION (PUj

l u5
IAVOKE THE PU TS EXEQUTE THE TASKS THEREIN B S
TO PERFORH THE OPERATIONS ON TARGETED Gt COMPONENTS

U.S. Patent Jun. 14,2016 Sheet 1 of 14 US 9,369,344 B2

118
100 RN
wp] [wep
. 03 03
108 N
0 122 | VRTUALZATION bt
1
C| i~ COMPUTE |ettg
USER ——=1 CONTROLLER > C106
—— NETWORK [M112
122
i STORKGE 110 |

FIG.1

U.S. Patent Jun. 14,2016 Sheet 2 of 14 US 9,369,344 B2

108
250 Cl CONTROLLER 42~
[A
USER NETWORK
0 PROCESSOR F
244
252
COMPONENT | J /| PROVISIONING
MANAGER 256 | ENGINE LOGIC
254 jg
PU GENERATOR |/
LOGIC /| BLUEPRINT,
258 PY
MEMORY

FIG.2

U.S. Patent Jun. 14,2016 Sheet 3 of 14 US 9,369,344 B2

300

4 AUTOMATICALLY COLLECT COMPONENT CONFIGURATION
INFORMATION FROM AND REPRESENTATIVE OF OPERATING

OF A CONVERGED INFRASTRUCTURE (Cl)

STORAGE, COMPUTE, NETWORK, AND VIRTUALIZATION COMPONENTS

SOLICIT COMPONENT CONFIGURATION
GENERATE INFORMATION FROM A USER THROUGH A GRAPHICAL
POD < USER INTERFACE

DESCRIPTOR

320
-/

30 RECEIVE COMPONENT CONFIGURATION INFORMATION

ENTERED MANUALLY THROUGH THE GRAPHICAL USER INTERFACE

325
|/

COMPUTE, NETWORK, AND VIRTUALIZATION COMPONENT
CONFIGURATION DEFINITIONS FOR THE CI BASED ON THE

_ CONFIGURATION INFORMATION

CONSTRUCT A POD DESCRIPTOR INCLUDING OPERATING STORAGE, W,

AUTOMATICALLY COLLECTED AND MANUALLY ENTERED COMPONENT

330

CONFIGURATION DEFINITIONS OF THE POD DESCRIPTOR

GENERATE SO THAT THE TASKS ARE SUPPORTED ON THE CI COMPONENTS

4 SELECT INVENTORY, ASSESS, AND CONFIGURE TASKS FROM |/
A LIBRARY OF TASKS BASED ON THE NETWORK COMPONENT

3%

U<

30

340

TASK MODELS OF A PACKAGE DESIGN SPECIFICATION {PU)

COMPILE THE SELECTED INVENTORY, ASSESS, AND CONFIGURE] /
TASKS INTO INVENTORY, ASSESSMENT, AND CONFIGURATION

345

INVOKE THE PU TO EXECUTE THE TASKS THEREIN

T0 PERFORM THE OPERATIONS ON TARGETED Cl COMPONENTS

J

FIG.3

U.S. Patent

Jun. 14, 2016 Sheet 4 of 14

270
r

TASK DEFINITION (TD) LIBRARY

INVENTORY TDS —— 402

- STORAGE COMPONENT 110

- NETWORK COMPONENT 112

- COMPUTE COMPONENT 114

- VIRTUALIZATION COMPONENT 116

ASSESSMENT TDg — 44

- STORAGE COMPONENT 110

- NETWORK COMPONENT 112

- COMPUTE COMPONENT 11

- VIRTUALIZATION COMPONENT 116

CONFIGURATION TDS — 406
- STORAGE COMPONENT 110
- NETWORK COMPONENT 112
- COMPUTE COMPONENT 114
- VIRTUALIZATION COMPONENT 116

FIG.4

US 9,369,344 B2

U.S. Patent

Jun. 14, 2016 Sheet 5 of 14

256

POD DESCRIPTOR
502,

STORAGE COMPONENT CONFIGURATION DEF.
(E.G, MODEL NO, SER. NO,, SOFTWARE
VERSION, TYPES - E.G., FLASH CARD, ETC)

504~

NETWORK COMPONENT CONFIGURATION DEF.
(E.G. MODEL NO,, SER. NO, SOFTWARE
VERSION, PORT ADDRESS RANGES FOR VLAN,
ETHERNET IDS)

506 —

COMPUTE COMPONENT CONFIGURATION DEF
(E.G. MODEL NO,, SER. NO, SOFTWARE
VERSION, NO. AND IDS OF ASSIGNED SERVER

BLADES)
508~

VIRTUALIZATION COMPONENT CONFIGURATION DEF.

(E.G., OS SOFTWARE VERSION)

S0~
INTER-COMPONENT CONNECTIONS/PORT MAPPING

FIG.5

US 9,369,344 B2

U.S. Patent Jun. 14,2016 Sheet 6 of 14 US 9,369,344 B2

260
PACKAGE
SPECIFICATION |/
UNIT (PU)

612
UIMODEL |/
INVENTORY o
TASK MODEL —

606
ASSESSMENT |
TASKMODEL | |

608
CONFIGURATION} | /
TASK MODEL

FIG.6

U.S. Patent Jun. 14,2016 Sheet 7 of 14 US 9,369,344 B2

700
CONFIGURATION TASK DEFINITION “”“

LABEL
704

ARGUMENTS { <arg name="disk" type="string" mandatory="true" label="Disk"/>

< <config-task-def id="netapp-disk-assign" category="Storage" label="Disk">
702 .
<arg name="owner" type="string" mandatory="true" label="Owner">
<config>
(" <l(CDATA]
<disk-sanown-assign>
CONFIGURATION <disk>Gdisk</disk>
SNIPPET <

706 <owner>Sowner</owner>

<disk-sanown-assign>

P
<config>

<feonfig-task-def>

FIG.7

U.S. Patent Jun. 14,2016 Sheet 8 of 14 US 9,369,344 B2

INVENTORY TASK DEFINITION 800
802
<task id="n5k-B-system-info" ref="query-network-device" label="System Info” >

<task-arg name="variable" value="Devicelnio,NX-0S" />
804 <task-arg name="parentElem" value="Devicelnfo" />
o FIG.8A
<task-arg name="attrLsf
- value="Hostname Model, Version,SerialNumber" />
<returns name="Hostname Model,Version,SerialNumber" type="table" />

<ftask> \ 806

INVENTORY TASK DEFINITION 810
/—812

<task ref="query-netapp" id="fcp-adapter-ist-info" />
<task-arg value="fcp-adapter-list-info" name="varList' />
614 <task-arg value="fcp-config-adapter-info" name="pareniElem" > FIG 8B
<task-arg value="adapter port-name" name="attrList" />
816 — <retumns type="table" name="adapter,port-name" />

S 818

<ftask>

INVENTORY TASK DEFINITION 820
/~—832

<task ref="query-netapp” id="eme-get-disk-info" >
<task-arg value="fcp-adapter-fist-info” name="varList' />
834 <task-arg value="fcp-config-adapter-info" name="parenttlem" /> FIG.8C
<task-arg value="adapter port-name" name="attrList" />
836 " <retums type="table" name="adapter port-name’ />

<ftask> A 838

U.S. Patent Jun. 14,2016 Sheet 9 of 14 US 9,369,344 B2

ASSESSMENT TASK DEFINITION 900
902
<task id="n5k-B-model" ref="query-network-device" label="Device Model"
o o906
expected-value="Nexus5XXX
failure-impact="FlexPod provisioning may fail”
902 failure-remedy="Replace this device with Nexus 5XXX model"
failure-status:"critical” summary-repori="true">
<task-arg name="variable" value="Devicelnfo,NX-0S" />
904 < <task-arg name="parentElem" value="Devicelnfo" />
<task-arg name="attrlist" value="Model’ />
i -910
{ <returns name="Model" type="table" />

<validation name="nexusMode" param"Model" type="regexp"

value="Nexus5[0-9]" summary-report="true"f>

<ftask>

FIG.9

CONFIGURATION TASK DEFINITION ~ 1000
1002 —
<task id="n5k-confiqure-interface-2" ref="nbk-configure-interface” label=Configure

Description Eth1/2" />
<task-arg name="name" value="Eth1/2" />
1004
<task-arg name="description" value="${var_ntap_B_hostname}.e2a" />

<ftask>

FIG.10

U.S. Patent Jun. 14,2016 Sheet 10 of 14 US 9,369,344 B2

TASKSEQUENCE 440

<task id="create-volume-1"
1102
\— ref="netapp-create-volums"
label="Create volume for Infrastructure vFiler">
<task>

(" <task-arg name="name" value="${volume_name}" />

1M04< <task-arg name="aggr" value="${aggregate_name}" />

_ <task-arg name="size" value="§{volume_size_in_mbjm >

<ftask>

1106

<task id="create-volume-2" ref="netapp-create-volume" label="Create volume for NFS Datastore"
(" <task-arg name="name" value="${volume_ds_name}' />

1108 <task-arg name="aggr" value="${aggregate_name}' />

_ <task-arg name="size" value="$§{ds_volume_size_in_mbjm" />

<ftask>

~ 120
f
<task id="enable-sis-" ref="netap‘)p-enable-sis“ label="Enable sis* >

122 = <task-arg name="path" value="${path_name}" />

<ftask>

FIG.11

U.S. Patent

Jun. 14, 2016 Sheet 11 of 14

INVENTORY TASK MODEL
SERIAL NUMBER

FIG.12A PORT LIST AND STATUS
NEIGHBOR STATUS

1200A

ASSESSMENT TASK MODEL
SOFTWARE VERSION

FIG.12B DEVICE MODEL } 12008
LICENSE

CONFIGURATION MODEL
AGGREGATE CREATION

FIG.12C VOLUME CREATION
VOLUME EXPORT

1200C

INPUT MODEL
DISK SIZE
WWPN START ADDRESS

FIG.12D WWPN SIZE 12000
MAC POOL START ADDRESS
MAC POOL SIZE

US 9,369,344 B2

US 9,369,344 B2

Sheet 12 of 14

Jun. 14, 2016

U.S. Patent

94¢

ARk

ONIddYW LHOd/SNOLLOINNOD INSNOJIOD- NI
0l

(NOISYHIA FHYMLI0S S0 "9 —

‘30 NOLLYHNOIINGD ININOJWOD NOLLYZITWLHIA

808
(s3av18
MIAIS GINDISSY 40 SOl GNY "ON ‘NOISYIA
JHVYMLI0S “ON 43S “ON T3a0N “9'3)

430 NOILYHNSINOD ININOIWOD 3LNdWOD

\- 909
(SQI 13NY3HL3
‘NYTA 04 STONVY SS2HAAY L0 ‘NOISHIA
TUVYMLA0S “"ON ¥3S “ON T3a0N "9'3)

430 NOLLYENDIANOD LNINOJNOD YHOMLIN
o | | 105
(013 ‘CYYD HSY14 93 - STdAL ‘NOISHIA

FHYMLIOS "ON 43S "ON T3a0N "9'3)
‘330 NOILYANINOD ININOJWOO 39V0L8
706
M0LdIMDS30 d0d

911 ININOAWOD NOILYZITYNLYIA -
pib- INNOJWOD 3LNHOD
241 ININOGIOD YHOMLEN -
01 ININOANOO 30VHOLS -
909 SQL NOILYHN9INOD

911 ININOAINOD NOILYZITYALYIA
vil LNINOJWOO 3LNdIOD
bl ININOQNOO MHOMEIN -

011 ININOJINOD JOVHOLS
pop — SALINFASSISSY

~ 914 ININOAWOO NOLLYZI VLI
— f11 IN3NOdWOJ 3LNdIO?
——— 71} ININOJOD YHOMLIN -
—— 01} ININOJWOO FOVH0LS -
70— SOL AYOLNIAN

AUYNEIT (GL) NOILINIAAQ YSVL

U.S. Patent

Jun. 14, 2016 Sheet 13 of 14 US 9,369,344 B2
142
1420
~
GENERALIZED TASK FRAMEWORK

INVENTORY || ASSESSMENT || CONFIGURATION | | CONFIGURATION gggﬁ
FRAMEWORK || FRAMEWORK |l FRAMEWORK BACKUP SRAVEWORK
0] 1404 —/ 1406 1408 — \1410

CiEl ISUFL | NUF VIF

W2 — - we- g/
TRANSPORT FRAMEWORK
\1419

FIG.14

U.S. Patent Jun. 14,2016 Sheet 14 of 14 US 9,369,344 B2

1500

FlexPod for ViMware Deployment Model
FlexPod for ViMware Overview
FlexPod for ViMware Architecture
FlexPod for Viware Configuration Deployment
Cabling Information
1510 —— NetApp FAS3210A Deployment Procedure--Part |
1512 — Cisco Nexus 5548 Deployment Procedure--Part |
Cisco Unified Computing System Deployment Procedure
Gather Necessary Information
{515 { ViMware ESXi Deployment Procedure
Vware vCenter Server Deployment Procedure
Cisco Nexus 1010 and 1000V Deployment Procedure
NetApp Virtual Storage Console Deployment Procedure
1510——NetApp Operations Manager Deployment Procedure
Appendix--FlexPed for VMware Configuration Information
Global, NetApp, Cisco, VMware Configuration Information
1510 — NetApp FAS3200 Sample Configuration
Filer Sample Interface Configuration
Sample Startup Information Configuration
Sample Volume Information
1512 — Cisco Nexus 5548, 1010, 1000v Sample Running Configurations
Cisco Unified Computing System Configuration Extracts
Sample Chassis Discovery Policy Configuration
Create an Organization
Create MAC Address Pools
1512{ Create Global VLAN Pools
Create a Network Control Policy
Create WNIC Template
Define QoS Policies and Jumbo Frames
Create Uplink Port-Channels to the Cisco Nexus 5548 Switches
Create WWANN Pool
1512{ Create WWPN Pools
Create Global VSANS
Create VHBA Templates
Create Boot Policies FIGAR
1514—— Create Server Pools
Create Service Profile Templates
Add a Block of IP Addresses for KVM Access

US 9,369,344 B2

1

AUTOMATED TECHNIQUES TO DEPLOY A
CONVERGED INFRASTRUCTURE HAVING
UNKNOWN INITIAL COMPONENT
CONFIGURATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 61/712,551, filed Oct. 11, 2012, which is
hereby incorporated by reference in its entirety.

TECHNICAL FIELD

The present disclosure relates to automated configuring of
converged infrastructures.

BACKGROUND

A data center, cloud resource, or the like, may be imple-
mented in the form of a converged infrastructure (CI). The CI
is a set of integrated Information Technology (IT) compo-
nents, such as storage, network, compute, and virtualization
software and/or device components. Vendors of the various
CI components typically provide validated design blueprints
in the form of human readable specifications that define to a
user extensive step-by-step manual procedures required to
perform critical operations on the components. Such opera-
tions include provisioning (i.e., initially configuring or set-
ting-up), reconfiguring/modifying, inventorying, and assess-
ing/validating the CI components. Therefore, the user is
required to step through painstaking manual procedures set
forth in the blueprints to perform the critical operations. This
is time consuming and burdensome for the user.

A given design blueprint generally assumes specific, fixed
hardware and/or software configurations of each of the stor-
age, network, compute, and virtualization components of the
CI. The assumed CI configurations support the critical opera-
tions defined in the blueprint. In practice, however, the CI
components often have unknown operational configurations
that vary or deviate from the assumed configurations. The
configuration differences complicate interactions between
the user, the blueprint, and the actual CI components because
the user is forced to detect the differences manually and then
make corresponding adjustments in order to follow the blue-
print. This adds complexity and cost to performing the critical
operations on the CI components.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example converged infra-
structure environment in which a converged infrastructure
(CD) is configured by and operates under control of a CI
controller.

FIG. 2 is a block diagram of an example CI controller
configured to perform management operations related to the
CI from FIG. 1.

FIG. 3 is an example sequence of operations to generate a
pod descriptor (PD) from collected component configuration
information, and to generate a package specification unit or
package unit (PU) based on the PD that may be used to
perform operations on the CI of FIG. 1.

FIGS. 4, 5, and 6 are example block diagrams of a Task
Definition Library, a PD, and a PU, respectively, referenced
by the operations in FIG. 3.

FIGS. 7, 8A-8C, and 9-11 depict example task definitions
and associated tasks embedded therein.

10

20

25

30

35

40

45

50

55

60

65

2

FIGS. 12A-12D depict example PU model menus that may
be displayed when the PU is invoked in in the operations of
FIG. 3.

FIG. 13 is an illustration of relationships/interactions
between operations from FIG. 3 to generate a portion of a PU,
a Task Definition Library, and a PD.

FIG. 14 is a block diagram of an example provisioning
engine to support PU activation and use under user control.

FIG. 15 is an excerpt from an example human readable CI
design blueprint for FlexPod™ from which task definition for
a Task Definition Library may be generated.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

Techniques are presented herein to automate and simplify
for a user a deployment of a converged infrastructure (CI),
which may have an initially unknown hardware and/or soft-
ware configuration. One technique automatically collects
component configuration information from and representa-
tive of operating storage, compute, and network components
of'the CI. Then, a pod descriptor is constructed based on the
collected information. The pod descriptor includes operating
storage, compute, and network component configuration
definitions for the CI based on the collected component con-
figuration information. A package specification unit is gener-
ated based on the component configuration definitions of the
pod descriptor. The package specification unit includes tasks
that, when executed, automatically inventory, assess, and
configure targeted ones of the CI components. The technique
executes the tasks in the package specification unit to perform
corresponding operations on targeted ones of the CI compo-
nents.
Example Embodiments

A converged infrastructure (CI) is a modular, integrated,
often pre-configured or at least easily configured, set of infor-
mation technology (IT) components, typically including stor-
age, network, compute, and virtualization components, that
may be shared across multiple user applications that require
storage, network, and compute resources. Due to the modular
nature of the CI, the CI components made available to the user
applications may be scaled up and down relatively easily and
efficiently in order to accommodate corresponding increases
and decreases in user application resource requirements.
Examples of known converged infrastructures (Cls) include,
but are not limited to, FlexPod™ by NetApp and Cisco,
VSPEX by EMC, and Vblock™ by VCE. Such known CIs are
configured and operated in accordance with respective ven-
dor CI specifications referred to herein as “blueprints™ that
have become quasi-industry standards.
CI Environment

Referring first to FIG. 1, a block diagram of an example
(CI) environment 100 is shown in which a CI 106 is config-
ured by and operates under control of, a CI Controller 108. CI
106 includes an integrated set of components, including a
storage component 110 to provide data storage, a network
component 112 to provide connectivity to external devices
and communication networks, a compute or server compo-
nent 114 to provide processing capacity to the CI, and a
virtualization component 116, such as a hypervisor, to host
virtual environments. Virtualization component 116 may host
multiple virtual user operating environments 118 on the stack
of CI components 110, 112, and 114. Virtual user operating
environments 118 may each include a virtualized operating
system (OS), and one or more applications (APs) executing in
the virtualized OS. Components 110, 112, and 114 provide

US 9,369,344 B2

3

respective data storage, network, and compute resources
required by each OS and the respective one or more APs.

At a high-level, CI Controller 108 serves as a unified,
automated, resource configured to manage CI 106. CI Con-
troller 108 includes one or more Graphical User Interfaces
(GUIs) through which a user may issue commands and pro-
vide data to the CI Controller to selectively cause the control-
ler to perform operations with respect to CI 106, such as to
provision, configure, assess/validate, and monitor the CI. As
used herein, the “provision” operation may be considered an
initial configure operation to configure the components of the
CI for useful operation after the components have been
unpacked and powered ON for the first time. Therefore, the
terms “provision” and “configure” and their various forms are
used interchangeably herein. Exemplary provision opera-
tions may establish storage volumes or partitions on storage
component 110, establish virtual local area network (vlan)
pools on network component 112, assign computing blades
on compute component 114, and establish virtual resource
pools on virtualization component 116.

CI Controller 108 manages CI 106 over a bi-directional
communication interface 122, including component inter-
faces 122a, 122b, 122¢, and 122d each to communicate
directly with a respective one of storage, network, compute,
and virtualization components 110, 112, 114, and 116. Com-
ponent interfaces 122a-1224d may support communications in
accordance with any number of different protocols, includ-
ing, for example, a network protocol such as the HyperText
Transfer Protocol (HTTP). To the extent that components
110-116 of CI 106 support different interface protocols, such
as a Rich Text or Extensible Markup Language (XML), com-
ponent interfaces 122a-122d of CI Controller 108 corre-
spondingly support the different protocols, and the CI Con-
troller may be configured to communicate with components
110-116 using different protocols to maintain interface com-
patibility with the components as necessary.

As mentioned above, a specific design of CI1 106 may be in
accordance with a vendor blueprint. Because the blueprint
complies with vendor specifications, the blueprint is said to
represent or define a “validated” design of a CI. In one form,
the blueprint is a human readable text- and graphics-based
document that defines to a user manual step-by-step proce-
dures and related information required to deploy, i.e., inven-
tory, assess/validate, provision, and configure/reconfigure,
each of the CI components in accordance with the specific
design. An excerpt from an example blueprint for FlexPod™
is depicted in, and will be described briefly later in connection
with, FIG. 15. The user may follow the manual procedures
outlined in the blueprint to deploy CI 106; however, this is a
manually intensive and time consuming activity. The design
blueprint generally assumes specific, fixed hardware and/or
software configurations for the storage, network, compute,
and virtualization components of the CI. The assumed CI
configurations support the component operations defined in
the blueprint. In practice, however, the CI components may
have operational hardware and/or software configurations
that vary or deviate from the assumed configurations.

The techniques presented herein advantageously automate
and simplify for the user the deployment of CI 106, which
may have an initially unknown hardware and/or software
configuration. The actual configuration may differ from a
given blueprint. Thus, the techniques presented herein may be
referred to as techniques to automatically deploy a CI having
unknown initial hardware and/or software component con-
figurations. In brief, in an initial phase, CI Controller 108
automatically determines the hardware and/or software con-
figuration of CI 106. To do this, CI controller 108 collects

10

15

20

25

30

35

40

45

50

55

60

65

4

component hardware and/or software configuration informa-
tion from the CI components while the components are oper-
ating and constructs a pod descriptor (PD) that defines the
actual CI component configurations based on the collected
information. Then, CI controller 108 automatically generates
apackage specification unit (PU) from the PD and a library of
tasks to which the CI controller has access. The PU includes
interactive menus and tasks selected from the task library that
control/interact directly with the CI components of CI 106.
The tasks are “machine readable” instructions or commands
formatted to conform to corresponding ones of CI component
interface specifications so as to be understood by a CI com-
ponent targeted by the command. The tasks, when executed,
perform operations on targeted components of the CI.
Because the PD accurately reflects the actual operating hard-
ware and/or software configuration of the CI components,
and because the PU is generated based on the PD, the PU also
accurately reflects the actual CI components in that the tasks
included in the PU are known to be supported by the CI
components.

In a subsequent operational phase, the user invokes/acti-
vates the PU on CI Controller 108. The tasks embedded in the
PU or to which the PU has access interact directly with
targeted ones of the CI components of CI 106 to configure and
operate the CI components in an automated manner. The
activated PU also includes and invokes an interactive user
interface through which the user may control the PU to inven-
tory, assess/validate, provision, and configure/reconfigure the
CI components in a user controlled, automated manner. In
other words, the PU executes the necessary component tasks
embedded therein to automatically perform user requested
operations on CI 106.

CI Controller

Reference is now made to FIG. 2, which shows an example
block diagram of CI Controller 108 configured to perform the
operations described herein, and particularly, to generate the
PD and the PU and then activate the PU to interact with CI
106. There are numerous possible configurations for CI Con-
troller 108 and FIG. 2 is meant to be an example. CI Control-
ler 108 includes a network interface unit 242, a processor 244,
memory 248, and a user Input/Output module 250 used in
association with the one or more GUIs to enable the user to
interface with the CI Controller. The network interface (I/F)
unit 242 is, for example, an Ethernet card device that allows
the CI Controller 108 to communicate over a network, e.g., a
wired (Ethernet) network. Network I/F 242 may also include
wireless connection capability. Interface 122 (from FIG. 1)
may be implemented through network I/F unit 242. The pro-
cessor 244 is a microcontroller or microprocessor, for
example, configured to execute software instructions stored
in the memory 248.

The memory 248 may comprise read only memory (ROM),
random access memory (RAM), magnetic disk storage media
devices, optical storage media devices, flash memory devices,
electrical, optical, or other physical/tangible (e.g., non-tran-
sitory) memory storage devices. Thus, in general, the
memory 248 may comprise one or more computer readable
storage media (e.g., amemory device) encoded with software
comprising computer executable instructions and when the
software is executed (by the processor 244) it is operable to
perform the operations described herein. For example, the
memory 248 stores or is encoded with instructions for Com-
ponent Manager Logic 252 to perform generalized manage-
ment operations on CI 106, PD Generator Logic 254 to gen-
erate a PD 256 based on collected CI component
configuration information, PU Generator Logic 258 to gen-
erate a PU 260 based on the PD, and Provisioning Engine

US 9,369,344 B2

5

(PE) Logic 262 to activate the PU and cooperate with the PU
to perform the inventory, assess/validate, provision, and con-
figure/reconfigure operations mentioned above. In addition,
memory 248 stores PD 256, PU 260, and task definitions with
associated tasks in a task definition library 270. The memory
GUI logic may be divided among logic units 252, 258, and
262 as necessary to support the respective logic operations.
Operation Flowchart

With reference to FIG. 3, a sequence of operations 300
includes a high-level operation 305 to generate PD 256 and a
high-level operation 310 to generate PU 260 based on the PD.

High-level operation 305 includes detailed operations 315-
330, now described.

At 315, PD Generator logic 254 automatically collects or
inventories component configuration information from and
representative of operating storage, compute, network, and
virtualization components 110-116 of C1106. Logic 254 may
execute inventory tasks to collect the component configura-
tion information for each of CI components 110-116 over
interfaces 112a-122d. Examples of such inventory tasks will
be described below in connection with FIGS. 8A-8C.
Example component configuration information collected
from each of CI components 110-116 includes, but is not
limited to, a serial number, a model number, a software and/or
operating system version, numbers and types of external
interfaces (e.g., universal serial bus (USB) connectors, fibre
channel protocol adapters (FCBs), etc.), numbers and identi-
ties of server blades for compute component 114, numbers
and types of supported memory for storage component 110
(e.g., flash memory cards), numbers and addresses of virtual
local area networks (vlans) for network component 112,
inter-component connections and port mappings, and so on.

At 320, logic 254 prompts a user for customizable compo-
nent configuration information through a graphical user inter-
face.

At 325, logic 254 receives customized component configu-
ration information entered by the user manually through the
graphical user interface. Operations 320 and 325 are optional.

At 330, logic 254 constructs PD 256 including storage,
compute, network, and virtualization component configura-
tion definitions based on the automatically collected and
manually entered component configuration information. The
storage, compute, network, and virtualization component
configuration definitions represent operating hardware and/
or software configuration profiles of corresponding ones of
storage, compute, network, and virtualization components
110-116.

High-level operation 310 receives PD 256 as an input and
generates PU 260 based on the PD and tasks selected from
task definition library 270. High-level operation 310 includes
detailed operations 335 and 340, now described.

At 335, PU Generator logic 258 selects inventory, assess,
and configure tasks from task definition library 270 based on
the network component configuration definitions of PD 256
so that the selected tasks are supported on the CI components
(as operationally configured).

At 340, logic 258 compiles the selected inventory, assess,
and configure tasks into corresponding ones of inventory,
assessment, and configuration task models of PU 260. Logic
258 also generates a user interface (UI) model of PU 260 that
is capable of displaying operational menus to the user.

At 345, PU 260 is invoked to execute the tasks in the task
models of PU 260 to perform operations on targeted ones of
operating CI components 110-116, e.g., to inventory, assess,
and configure targeted components.

25

40

45

55

6

Data Structures for Task Definition Library, Pod Descriptor,

and Package Design Unit

As described above in connection with FIG. 3, operations
300 rely on and generate various data structures, including
task definition library 270, PD 256, and PU 260, each of
which is now described in connection with FIGS. 4, 5, and 6,
respectively.

Turning to FIG. 4, an example block diagram of task defi-
nition library 270 is shown. Task definition library 270
includes many task definitions. Each of the many task defi-
nitions is associated with a specific task that, when executed,
performs an operation on a targeted one of CI components
110-116. The task is executed when the associated task defi-
nition is invoked or called by name, as will be described more
fully below in connection with FIGS. 7-11.

Task definition library 270 includes:

i. multiple inventory task definitions 402 associated with
inventory tasks to read data from targeted ones of the CI
components, e.g., read model number, software version,
port mappings, etc.;

. multiple assessment task definitions 404 associated with
assessment tasks to assess/validate information, e.g.,
model number, software version, etc., related to targeted
ones of the CI components; and

iii. multiple configuration task definitions 406 associated
with configuration tasks to configure targeted ones of the
CI components, e.g., establish vlan pools, assign server
blades, etc.

Because each task definition is associated with a specific
task, task definition library 270 is also referred to herein as a
task library to store tasks. Also, selecting a task definition
results in selecting the associated task.

Turning to FIG. 5, an example block diagram of PD 256 is
shown. PD 256 includes:

i. a storage component configuration definition 502 repre-
sentative of an operating hardware and/or software con-
figuration of storage component 110;

ii. a network component configuration definition 504 rep-
resentative of an operating hardware and/or software
configuration of network component 112;

iii. a compute component configuration definition 506 rep-
resentative of an operating hardware and/or software
configuration of storage component 114;

iv. a virtualization component configuration definition 508
representative of an hardware and/or software operating
configuration of virtualization component 110; and

v. an inter-component connections/port-mapping defini-
tion 510 that defines inter-component connections and
port mapping in CI 106.

Each of component configuration definitions 502-508 lists
respective CI component features collected in operation 315
of FIG. 3 (e.g., model number, software version, etc., as
depicted in FIG. 5).

With reference to FIG. 6, there is shown an example block
diagram of PU 260. PU 600 includes:

i. an Inventory Task Model 604 that is associated with

inventory tasks to solicit and read component informa-
tion from CI components 110-116;

ii. an Assessment Task Model 606 that includes or is asso-
ciated with assessment tasks to assess/validate the CI
components;

iii. a Configuration Task Model 608 that includes or is
associated with configure tasks to configure the CI com-
ponents; and

iv. a User Interface (UI) Model 612 that includes logic to
generate display prompts or menus to solicit and receive
CI component information from the user, and provide

jard

i

US 9,369,344 B2

7

the received information to the other PU models as
appropriate. Display menus associated with each of the
Task Models 604-608 (discussed below in connection
with FIGS. 12A-12D) may be included in the corre-
sponding Task Models or in Ul Model 612.

The PU models may be generated in formats including, but
not limited to, Extensible Markup Language (XML), JavaS-
cript Object Notation (JSON), and so on.

Task Definitions

As described above, task definitions and their associated
tasks represent fundamental building blocks of task definition
library 270 and PU 260. Therefore, numerous examples of
task definitions and associated tasks are discussed below in
connection with FIGS. 7-11. Specifically, FIGS. 7-11 depict
example task definitions 700, 800, 810, 820, 900, and 1000
that may be selected from task definition library 270 at opera-
tion 335 of FIG. 3 and compiled into Inventory, Assessment,
and/or Configuration Task Models 604-608 of PU 260 at
operation 340, as appropriate. Each of PU Task Models 604-
608 typically includes many such task definitions and asso-
ciated tasks.

Generally, each task definition includes (i) a human read-
able task identifier (ID) that may be displayed in and selected
from a corresponding task model menu, (ii) one or more CI
component readable commands (also referred to interchange-
able as “task” or “tasks” above) associated with the task ID
and each to perform a corresponding operation on a targeted
component when the task is executed (i.e., when the task
definition is called by its task ID), and (iii) one or more task
arguments through which one or more component parameters
are passed to the tasks/commands and to the targeted compo-
nent when the task definition is called by its task ID to execute
the embedded task. The necessary component parameters
associated with a given task (of the task definition) may be
solicited from the user before the task definition is called
through a corresponding Ul model menu (e.g., Ul menu 500D
in FIG. 5D), or when the task definition is called by name to
executed its embedded task. The task definitions (task ID,
tasks/commands/, and task arguments) may be generated in
any number of different formats including, but not limited to,
plain text, XML, JSON, and so on.

The tasks/commands in each task definition conform to a
vendor command specification for the targeted CI compo-
nent. For example, the syntax and structure of each command
may follow a vendor defined data model for the targeted
component. Because each command is formatted according
to the corresponding vendor defined data model, each task/
command is capable of being interpreted or understood by the
targeted component. In contrast, the corresponding task ID is
a functional, vendor-independent (i.e., abstracted), alpha-nu-
meric ID that is easily understood by the user. Thus, the task
1D is abstracted from the vendor command specification to a
higher level that is understandable to a person.

Turning now to FIG. 7, there is depicted task definition 700
to perform a configure operation on storage component 110
of CI 106, namely to make an owner assignment to a disk.
Other task definitions may be constructed with a similar over-
all framework, i.e., structure and syntax, as task definition 700
in order to perform additional configure operations on storage
component 110, or to perform configure operations on the
compute, network, and virtualization components of CI 106.

Task definition 700 includes a high-level label section 702,
an argument section 704, and a configuration snippet 706
(also referred to as a “configuration object fragment”). Label
section 702 includes an easy to understand, functional, iden-
tifier (ID) that identifies task definition 700. In the example of
FIG. 7, label section 702 includes an alphanumeric task ID

10

15

20

25

30

35

40

45

50

55

60

65

8

“netapp-disk-assign” to identify the task definition function-
ally, a component category “Storage” to identify the CI com-
ponent (namely, storage) to be configured functionally, and a
label “Disk”” Other possible component categories corre-
sponding to the other CI components include “Compute,”
“Network,” and “Virtualization” categories.

Argument section 704 includes definitions, i.e., names and
corresponding type descriptors, of one or more component
parameters to be received by configuration task 700 when it is
invoked. The received component parameters are passed to
configuration snippet 706. In the example of FIG. 7, argument
section 704 defines two arguments corresponding to two con-
figuration parameters to be received and passed to configura-
tion snippet 706. The two arguments include (i) “disk” of type
“string,” and (ii) “owner” also of type “string.”

Configuration snippet 706 includes a configuration com-
mand or task “disk-sanown-assign.” The configuration com-
mand “disk-sanown-assign” performs a configure operation,
namely, disk ownership assignment, on target storage com-
ponent 110, when task definition 700 is invoked. When task
definition 700 is invoked, the following operations occur.
First, configuration parameters “$Disk” and “$Owner” are
received through argument section 704 and passed to the
configuration command “disk-sanown-assign” of configura-
tion snippet 706. Then, the configuration command “disk-
sanown-assign” along with the passed parameters “$Disk”
and “$Owner” are pushed, i.e., provided, to target storage
component 110 to perform the disk assignment operation on
the storage component. The operations just described with
respect to task definition 700 are understood to extend gen-
erally to other task definitions that may be constructed and
invoked in accordance with the techniques described herein
to perform operations on all of the components 110-116 of CI
106.

Turning to FIG. 8A, inventory task definition 800 includes
a task identifier 802 “query-network-device,” accepts three
component parameters 804 (also referred to herein as argu-
ments 804, and includes a task/command 805 that returns
inventory information 806 (e.g., Hostname, Model, Version,
SerialNumber) queried from the targeted CI component when
the task/command is executed.

Turning to FIG. 8B, inventory task definition 810 includes
a task identifier 812 “fcp-adapter-list-info,” accepts three
component parameters 814, and a task/command 816 to
return inventory information 818 (e.g., adapter, port-name)
queried from targeted network component 112.

Turning to FIG. 8C, inventory task definition 830 includes
a task identifier 832 “emc-get-disk-info,” accepts three com-
ponent parameters 834, and a task/command 836 to return
inventory information 838 (e.g., adapter, port name) queried
from targeted storage component 110.

Turning to FIG. 9, assessment/validation task definition
900, identified at 902 as “query-network-device,” validates a
“Device Model” of network component 112. Task definition
900 accepts three arguments 904 and an expected value 906
for the Device Model. Task definition 900 includes a task/
command 908 that queries network component 112 for its
model, which is returned at 910 as “Model.” Task definition
900 compares the returned model 910 against the expected
value 906. If the compare indicates a mismatch, i.e., the
compare failed, then the task reports/displays this failure
status according to result descriptors 920. Alternatively, if
there is no mismatch, i.e., the compare passes, then the task
reports/displays the pass status.

Turning to FIG. 10, another configuration task definition
1000 identified at 1002 accepts two arguments 1004 and
configures an Ethernet port of network component 112.

US 9,369,344 B2

9

FIGS. 7-10 discussed above depict separate task defini-
tions each associated with a task to perform a discrete opera-
tion on a targeted one of CI components 110-116. Task Mod-
els 604-608 of PU 260 may each include many task
definitions and associated tasks, and may also include scripts
to invoke/execute tasks in a defined sequence or order to
perform a specific operational goal on targeted CI compo-
nents, as is now discussed in connection with FIG. 11. In FIG.
11, there is depicted an example script 1100 of task IDs of task
definitions to achieve specific configure operations on storage
component 110 of CI 106, namely to create a volume 1 and a
volume 2 on storage component 110. Script 1100 may be
generated and compiled at operations 335 and 340 in FIG. 3.

Script 1100 references a first call 1102 to a task definition
identified as “netapp-create-volume” to create a volume 1 on
storage component 110. A call by identifier to a task definition
results in execution of the embedded task. The call receives a
first set of parameters 1104 “${volume_name},” “${aggre-
gate_name},” and “{volume_size_in_mb}.” When invoked at
call 1102, the task identified as “netapp-create-volume” will
create volume 1 on storage component 110 based on the
parameters 1104.

Script 1100 references a subsequent, second call 1106 to
the task definition identified as “netapp-create-volume” to
create a volume 2 on storage component 110. The call
receives a second set of parameters 1108 “${volume_
ds_name},” “${aggregate_name},” and “{volume_
size_in_mb}.” When invoked the second time at call 1106, the
task identified as “netapp-create-volume” will create volume
2 on storage component 110 based on the parameters 1108. In
this way, the task definition identified as “netapp-create-vol-
ume” may be reused in succession with different parameters
to configure different aspects of storage component 110.

Script 1100 includes a subsequent call 1120 to a task defi-
nition identified as “netapp-enable-sis,” which accepts a
single parameter 1122 to further configure storage compo-
nent 110.

Scripts may be generated to configure all of the compo-
nents 110-116 of CI 106. For example, assume the task defi-
nitions include: a compute component task definition includ-
ing a compute component command and a corresponding
compute task argument to assign a server blade among a pool
of server blades on compute component 114; a storage task
definition including a storage component command and a
corresponding storage task argument to create a storage vol-
ume on storage component 110; and a network task definition
including a network component command and a correspond-
ing network task argument to establish a network pool and
address range on network component 112. Then a script may
be generated to call the compute, storage, and network task
definitions to configure the storage, network, and compute
components, respectively.

Package Design Unit Menus

With the above detailed description of task definitions,
tasks, and scripts as context, the manner in which PU 260 may
be controlled by the user to select and perform operations on
CI 106 is now described in connection with FIGS. 12A-12D.
FIGS. 12A-12D depict example PU model menus (and asso-
ciated model tasks) that may be displayed when CI Controller
108 invokes PU 260 under user control (e.g., at operation 345
of FIG. 3) to execute the tasks in the PU. The term “menu(s)”
means any prompt or list of prompts displayed to the user and
through which the user may make a selection or enter infor-
mation.

FIG. 12A is an illustration of an example inventory task
menu 1200A that may be displayed when the user invokes PU
260. Menu 1200A lists exemplary inventory tasks by corre-

10

15

20

25

30

35

40

45

50

55

60

65

10

sponding task IDs (e.g., Serial Number, Port list and status,
and Neighbor Status). Each of the task IDs is associated with
an underlying inventory task in Inventory Task Model 604 of
PU 260. When the user selects a given task by task ID from
menu 1200A, the associated underlying task is invoked, i.e.,
executed, to solicit the required information (e.g., Serial
Number) from a targeted one of CI components 110-116.

FIG. 12B is an illustration of an example assessment task
menu 1200B that may be displayed when PU 260 is invoked.
Menu 1200B lists exemplary assessment tasks by task ID
(e.g., Software Version, Device Model, license). Each of the
task IDs is associated with an underlying task in Assessment
Task Model 606 of PU 260. When the user selects a given task
by task ID from menu 1200B, the associated underlying task
is invoked to assess/validate a given aspect (e.g., Software
Version) of a targeted one of CI components 110-116.

FIG.12C is an illustration of an example configuration task
menu 1200C that may be displayed when PU 260 is invoked.
Menu 1200C lists exemplary configuration tasks by task ID
(e.g., Aggregate Creation, Volume Creation, Volume Export).
Each of the task 1Ds is associated with an underlying task in
Configuration Task Model 608 of PU 260. When the user
selects a given task by name from menu 1200C, the associated
underlying task is invoked to configure a targeted one of CI
components 110-116, e.g., to create a storage volume on
storage component 110.

FIG. 12D is an illustration of an example Ul model menu
1200D that may be displayed when PU 260 is invoked. Menu
1200C lists exemplary information to be solicited from the
user (e.g., Disk size, World Wide Port Name (WWPN) Start
Address, Media Access Control (MAC) Pool size, etc.).
When the user enters the prompted information, Ul model
612 of PU 600 provides the entered information to the appro-
priate other model in the PU.

Generating a PU

With reference to FIG. 13, the manner in which operations
335 and 340 of FIG. 3 cooperate to generate PU 260 is now
described. FIG. 13 depicts relationships between operations
335 and 340, task definition library 270, and PD 256 used to
generate a portion of PU 260, namely, Inventory Task Model
604. Initially, operation 335 selects those task definitions
among task definitions 402-406 that are supported by the
operating configurations of storage, network, compute, and
virtualization components 110-116 as defined in correspond-
ing ones of storage, network, compute, and virtualization
component configuration definitions 502-508 of PD 256. This
can be thought of as mapping component configuration defi-
nitions 502-508 of PD 256 to selected ones of the task defi-
nitions 402-406. In the example of FIG. 3 to generate Inven-
tory Task Model 604, such mapping is indicated as left-
pointing arrows connecting component configuration
definitions 502-508 to corresponding selected ones of task
definitions of inventory task definition 402.

Operation 340 then compiles the inventory, assessment,
and configuration tasks selected or mapped by operation 335
into corresponding ones of Task Models 604-608 of PU 260.
In the example of FIG. 13, operation 340 compiles all of the
selected inventory task definitions into Inventory Task Model
604. This compilation is indicated as a downward pointing
arrow in FIG. 13. The example depicted in FIG. 13 is
extended to map PD definitions 502-508 to selected ones of
assessment task definitions 404 and compile the selected
assessment task definitions into Assessment Task Model 606.
The example is further extended to map PD definition 502-
508 to selected ones of configuration task definitions 406 and
compile the selected configuration tasks into Configuration
Task Model 608.

US 9,369,344 B2

11

CI Controller Provisioning Engine

FIG. 14 is a block diagram of an example configuration
1400 of Provisioning Engine logic 256. Configuration 1400 is
also referred to herein as provisioning engine 1400. Provi-
sioning engine 1400 provides a logical framework within
which PU models 408-412 may operate when PU 400 is
invoked at operation 345 of FIG. 3, for example. Configura-
tion engine 1400 includes an inventory framework 1402, an
assessment framework 1404, a configuration framework
1406, and a configuration backup 1408 to host and interact
respectively with Inventory Task Model 404, Assessment
Task Model 406, Configuration Task Model 408, and Ul
Model 412 of PU 400. Provisioning engine 1400 also
includes a neighbor discover framework 1410.

Provisioning engine 1400 includes component/device
communication drivers C I/F 1412, S I/F 1414, N I/F 1416,
and V I/F 1418 to support communications (of the PU model
tasks) respectively with compute component 114, storage
component 110, network component 112, and virtualization
component 116 through a transport framework 1419. Provi-
sioning engine 1400 also includes a generalized framework
1420 through which the various PU models hosted in the
corresponding frameworks may inter-communicate, and a
GUI 1422 to support PU model interaction with the user as
described above.

CI Design Blueprint and Generation of Task Definitions

As described above, task definition library 270 includes
many task definitions from which appropriate task definitions
are selected for incorporation into PU 260. The many task
definitions in task definition library 270 may be generated
from a blueprint of a CI design, as is now described. With
reference to FIG. 15, there is depicted an excerpt from an
example human readable CI design blueprint 1500 for Flex-
Pod™ from which task definitions may be generated. The
excerpt includes a sequence of line items that together form
an outline or table of contents for the blueprint. That is, each
line item listed is associated with further descriptive text and
graphics of the blueprint not shown in FIG. 15. Collectively,
the line items listed in FIG. 15 and the associated further
description provide information on how to configure the stor-
age, network, compute, and virtualization components in
accordance with a validated design represented by the blue-
print.

The process to generate tasks (“generate-tasks-process™)
from the blueprint receives the blueprint as an input. The
process also receives vendor provided interface data models,
i.e., specifications, for each of the storage, network, compute,
and virtualization components of the CI. The interface data
models define task definitions with tasks/commands to inter-
act with and perform operations on targeted ones of the CI
components.

In an initial operation, the generate-tasks-process associ-
ates each of the line items in blueprint 1500 and its associated
underlying description with a corresponding one of assumed
CI components and, correspondingly, with the data model for
that CI component. As an example, the task generate process
associates: (i) storage-related line items 1510 (and the asso-
ciated underlying description) with the CI storage component
(e.g., storage component 150 of C1106), and correspondingly
with the storage component interface data model; (ii) network
related line items 1512 with the CI network component (e.g.,
network component 152) and its related data model; (iii)
compute line items 1514 with the CI compute component and
its related data model; and (iv) virtualization related line
items 1516 with the CI virtualization component and its
related data model.

10

15

20

25

30

35

40

45

50

55

60

65

12

As just mentioned, the initial operation associates the line
items of the blueprint with appropriate corresponding com-
ponent data models. A result is that the line items are now
correspondingly mapped to the vendor defined task defini-
tions available in the associated data models.

In a next operation, the generate-tasks-process maps each
of the line items to one or more of inventory, assess, and
provision/configure activities based on the subject matter
addressed by the line item and its underlying description.
After this operation, the task definitions already associated
with the line items are now correspondingly associated with
the one or more activities.

In a next operation, the task-generate-process populates
task definition library 270 with mapped task definitions (as
determined in the previous operation).

The techniques presented herein advantageously automate
and simplify for the user a deployment of a CI, which has
initially unknown hardware and/or software component con-
figurations. One technique automatically determines actual
hardware and/or software configurations of the CI compo-
nents while the CI components are operating and stores the
determined configurations in a pod descriptor. The technique
automatically generates a package design unit from the pod
descriptor that may be invoked by the user to perform opera-
tions on the CI components. The package design specification
accurately reflects the actual configuration of the CI compo-
nents because it was generated based on the pod descriptor
and, therefore, is fully supported by the CI components.

In summary, in one form, a method is provided, comprising
automatically collecting component configuration informa-
tion from and representative of operating storage, compute,
and network components of a converged infrastructure (CI);
constructing a pod descriptor including operating storage,
compute, and network component configuration definitions
for the CI based on the collected component configuration
information; generating a package specification unit based on
the component configuration definitions of the pod descrip-
tor, the package specification unit including tasks that, when
executed, automatically inventory, assess, and configure tar-
geted ones of the CI components; and executing the tasks in
the package specification unit to perform corresponding
operations on targeted ones of the CI components.

In another form, an apparatus is provided, comprising: a
network interface unit configured to send and receive com-
munications over a network; and a processor coupled to the
network interface unit, and configured to: automatically col-
lect component configuration information from and represen-
tative of operating storage, compute, and network compo-
nents of a converged infrastructure (CI); construct a pod
descriptor including operating storage, compute, and network
component configuration definitions for the CI based on the
collected component configuration information; generate a
package specification unit based on the component configu-
ration definitions of the pod descriptor, the package specifi-
cation unit including tasks that, when executed, automatically
inventory, assess, and configure targeted ones of the CI com-
ponents; and execute the tasks in the package specification
unit to perform corresponding operations on targeted ones of
the CI components.

In still another form, a processor readable medium is pro-
vided. The processor readable medium stores instructions
that, when executed by a processor, cause the processor to:
automatically collect component configuration information
from and representative of operating storage, compute, and
network components of a converged infrastructure (CI); con-
struct a pod descriptor including operating storage, compute,
and network component configuration definitions for the CI

US 9,369,344 B2

13

based on the collected component configuration information;
generate a package specification unit based on the component
configuration definitions of the pod descriptor, the package
specification unit including tasks that, when executed, auto-
matically inventory, assess, and configure targeted ones of the
CI components; and execute the tasks in the package speci-
fication unit to perform corresponding operations on targeted
ones of the CI components.

Although the method, apparatus, and computer program
product/processor readable medium are illustrated and
described herein as embodied in one or more specific
examples, it is nevertheless not intended to be limited to the
details shown, since various modifications and structural
changes may be made therein without departing from the
scope of the apparatus, system, and method and within the
scope and range of equivalents of the claims. Accordingly, it
is appropriate that the appended claims be construed broadly
and in a manner consistent with the scope of the apparatus,
system, and method, as set forth in the following claims.

What is claimed is:
1. A method comprising:
collecting component configuration information from and
representative of operating storage, compute, and net-
work components of a converged infrastructure (CI);

constructing a pod descriptor including operating storage,
compute, and network component configuration defini-
tions for the CI based on the collected component con-
figuration information;

generating a package specification unit based on the com-

ponent configuration definitions of the pod descriptor,
the package specification unit including tasks that, when
executed, automatically inventory, assess, and configure
targeted ones of the CI components; and

executing the tasks in the package specification unit to

perform corresponding operations on targeted ones of
the CI components.
2. The method of claim 1, wherein the constructing the pod
descriptor includes:
prompting a user for customizable component configura-
tion information through a graphical user interface;

receiving customized component configuration informa-
tion entered manually through the graphical user inter-
face; and

writing the automatically collected and the manually

entered component configuration to corresponding ones
of the storage, compute, and network component con-
figuration definitions of the pod descriptor.

3. The method of claim 2, wherein the generating a package
specification unit includes:

selecting the inventory, assess, and configure tasks from a

library of tasks based on the component configuration
definitions of the pod descriptor so that the tasks are
supported on the CI components; and

compiling the selected inventory, assess, and configure

tasks into inventory, assessment, and configuration task
models of the package design specification.

4. The method of claim 3, wherein the executing includes
executing the tasks in the package specification unit to inven-
tory, assess, and configure targeted ones of the CI compo-
nents.

5. The method of claim 3, wherein each task is part of a
corresponding task definition that includes:

a task identifier (ID);

the task represented as one or more component readable

commands each to perform a corresponding operation
on a targeted component when the task is executed; and

14

one or more task arguments through which one or more
component related parameters are passed to the com-
mands and to the targeted component when the task is
executed,

5 wherein executing the task includes providing the com-
mands therein and the passed component related param-
eters to the targeted CI component.

6. The method of claim 1, wherein the collecting includes
collecting from at least some of the CI components: a com-
ponent model number; a component serial number; a soft-
ware version; a number and a type of external interface ports;
and a number and type of memory cards that are supported.

7. The method of claim 1, wherein:

the collecting further includes collecting component con-

figuration information from and representative of a vir-
tualization component of the CI; and

the generating further includes generating a virtualization

component configuration definition in the pod descrip-
tor based on the collected virtualization component con-
figuration information.

8. An apparatus comprising:

a network interface unit configured to send and receive

communications over a network; and
a processor coupled to the network interface unit, and
configured to:
collect component configuration information from and
representative of operating storage, compute, and net-
work components of a converged infrastructure (CI);
construct a pod descriptor including operating storage,
compute, and network component configuration defi-
nitions for the CI based on the collected component
configuration information;
generate a package specification unit based on the com-
ponent configuration definitions of the pod descriptor,
the package specification unit including tasks that,
when executed, inventory, assess, and configure tar-
geted ones of the CI components; and
execute the tasks in the package specification unit to
perform corresponding operations on targeted ones of
the CI components.
9. The apparatus of claim 8, wherein the processor is con-
figured to construct the pod descriptor by:
prompting a user for customizable component configura-
tion information through a graphical user interface;

receiving customized component configuration informa-
tion entered manually through the graphical user inter-
face; and

writing the collected and the manually entered component

configuration to corresponding ones of the storage, com-
pute, and network component configuration definitions
of the pod descriptor.

10. The apparatus of claim 9, wherein the processor is
configured to generate the package specification unit by:

selecting the inventory, assess, and configure tasks from a

library of tasks based on the component configuration
definitions of the pod descriptor so that the tasks are
supported on the CI components; and

compiling the selected inventory, assess, and configure

tasks into inventory, assessment, and configuration task
models of the package design specification.

11. The apparatus of claim 10, wherein the processor is
configured to execute the tasks in the package specification
unit to inventory, assess, and configure targeted ones of the CI
components.

12. The apparatus of claim 10, wherein each task is part of
a corresponding task definition that includes:

a task identifier (ID);

the task represented as one or more component readable

commands each to perform a corresponding operation
on atargeted component when the task is executed; and

20

35

40

45

55

65

US 9,369,344 B2

15

one or more task arguments through which one or more
component related parameters are passed to the com-
mands and to the targeted component when the task is
executed,

wherein the processor configured to provide the one or

more commands therein and the passed component
related parameters to the targeted CI component.

13. The apparatus of claim 8, wherein the processor is
configured to collect from at least some of the CI components:
a component model number; a component serial number; a
software version; a number and a type of external interface
ports; and a number and type of memory cards that are sup-
ported.

14. The apparatus of claim 8, wherein the processor is
configured to:

collect component configuration information from and

representative of a virtualization component of the CI;
and

generate a virtualization component configuration defini-

tion in the pod descriptor based on the collected virtual-
ization component configuration information.
15. A non-transitory processor readable medium storing
instructions that, when executed by a processor, cause the
processor to:
collect component configuration information from and
representative of operating storage, compute, and net-
work components of a converged infrastructure (CI);

construct a pod descriptor including operating storage,
compute, and network component configuration defini-
tions for the CI based on the collected component con-
figuration information;

generate a package specification unit based on the compo-

nent configuration definitions of the pod descriptor, the
package specification unit including tasks that, when
executed, inventory, assess, and configure targeted ones
of'the CI components; and

execute the tasks in the package specification unit to per-

form corresponding operations on targeted ones of the
CI components.

16. The processor readable medium of claim 15, wherein
the instructions to cause the processor to construct the pod
descriptor include instructions to cause the processor to:

prompt a user for customizable component configuration

information through a graphical user interface;

receive customized component configuration information

entered manually through the graphical user interface;
and

write the collected and the manually entered component

configuration to corresponding ones of the storage, com-
pute, and network component configuration definitions
of'the pod descriptor.

w

10

—_
w

20

30

40

16

17. The processor readable medium of claim 16, wherein
the instructions to cause the processor to generate the package
specification unit include instructions to cause the processor
to:

select the inventory, assess, and configure tasks from a

library of tasks based on the component configuration
definitions of the pod descriptor so that the tasks are
supported on the CI components; and

compile the selected inventory, assess, and configure tasks

into inventory, assessment, and configuration task mod-
els of the package design specification.
18. The processor readable medium of claim 17, wherein
the instructions to cause the processor to execute include
instructions to cause the processor to execute the tasks in the
package specification unit to inventory, assess, and configure
targeted ones of the CI components.
19. The processor readable medium of claim 17, wherein
each task is part of a corresponding task definition that
includes:
a task identifier (ID);
the task represented as one or more component readable
commands each to perform a corresponding operation
on atargeted component when the task is executed; and

one or more task arguments through which one or more
component related parameters are passed to the com-
mands and to the targeted component when the task is
executed,

wherein the instructions to cause the processor to execute

the task include instructions to cause the processor to
provide the one or more commands therein and the
passed component related parameters to the targeted CI
component.

20. The processor readable medium of claim 15, wherein
the instructions to cause the processor to collect include
instructions to cause the processor to collect from at least
some of the CI components: a component model number; a
component serial number; a software version; a number and a
type of external interface ports; and a number and type of
memory cards that are supported.

21. The processor readable medium of claim 15, wherein:

the instructions to cause the processor to collect includes

instructions to cause the processor to collect component
configuration information from and representative of a
virtualization component of the CI; and

the instructions to cause the processor to generate include

instructions to cause the processor to generate a virtual-
ization component configuration definition in the pod
descriptor based on the collected virtualization compo-
nent configuration information.

#* #* #* #* #*

